## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 3-Hydroxy-2,2-bis(1H-pyrazol-1-yl)cyclopentanone

Victor B. Rybakov,* Anastasia A. Utkina, Alexander V. Kurkin and Marina A. Yurovskaya

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
Correspondence e-mail: rybakov20021@yandex.ru

Received 14 February 2012; accepted 20 February 2012
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; $R$ factor $=0.046 ; w R$ factor $=0.124 ;$ data-to-parameter ratio $=15.6$.

The title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$, was unexpectedly obtained in the reaction of $\alpha, \alpha^{\prime}$-disubstituted cyclopentanone with 1,1,3,3-tetramethoxypropane in the presence of dioxane saturated with HCl . It belongs to a previously unknown class of gem-bihetaryl ketones which may be useful for screening of new substances with biological activity. In the studied structure, the cyclopentanone moiety adopts an envelope conformation, with the hydroxy-bearing C atom as the flap [deviation from basal plane $=0.643$ (3) $\AA$ ]. The dihedral angle between the two pyrazole rings is $80.02(8)^{\circ}$. In the crystal, inversion dimers are formed via a pair of $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

## Related literature

For the medicinal chemistry of chiral carbo- and heterocyclic substituents of pyrazole, see: Bennani et al. (2007); Srivastava et al. (2007). For the $\alpha$-amination of carbonyl compounds, see: List (2002). For standard values of bond lengths in organic compounds, see: Allen et al. (1987).

## Experimental

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=232.25$
Monoclinic, $P 2_{1} /$ c
$a=11.4360$ (11) A
$b=9.5925$ (9) A
$c=11.5968(11) \AA$
$\beta=117.25$ (2) ${ }^{\circ}$

$$
\begin{aligned}
& V=1131.0(3) \AA^{3} \\
& Z=4 \\
& \text { Ag } K \alpha \text { radiation } \\
& \lambda=0.56085 \AA \\
& \mu=0.06 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& 0.20 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Enraf-Nonius CAD-4 diffractometer
2709 measured reflections
2458 independent reflections

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.124$
$S=1.04$
2458 reflections
158 parameters

1723 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
1 standard reflections every 60 min intensity decay: none

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.18 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 3-\mathrm{H} 3 a \cdots \mathrm{~N} 22 b^{\mathrm{i}}$ | $0.90(3)$ | $1.88(3)$ | $2.781(2)$ | $179(2)$ |
| Symmetry code: (i) $-x+2,-y,-z$. |  |  |  |  |

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Russian Foundation for Basic Research, grant No. 11-03-00444a. The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2045).

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bennani, Y. L., Campbell, M. G., Dastrup, D. \& Huck, E. P. (2007). US Patent Application 20070197526.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
List, B. (2002). J. Am. Chem. Soc. 124, 5656-5657.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Srivastava, B. K., et al. (2007). J. Med. Chem. 50, 5951-5966.

## supplementary materials

Acta Cryst. (2012). E68, o844 [doi:10.1107/S1600536812007659]

## 3-Hydroxy-2,2-bis(1H-pyrazol-1-yl)cyclopentanone

Victor B. Rybakov, Anastasia A. Utkina, Alexander V. Kurkin and Marina A. Yurovskaya

## Comment

The pyrazole derivatives with chiral carbo- and heterocyclic substituents at the nitrogen atom have great importance for medicinal chemistry (Bennani et al., 2007; Srivastava et al., 2007). The substituted hydrazine derivatives are suitable and accessible reagents in the reactions with 1,3-dicarbonilyl compounds or their masked forms for the preparation of various N -substituted pyrazoles. We have used for the synthesis of starting hydrazine the reaction of direct stereoselective $\alpha$ amination of cyclopentanone catalyzed by $L$-proline with azadicarboxylates as the source of nitrogen (List, 2002). Under these conditions the reaction of $\alpha$-amination affords to bis- $\alpha, \alpha^{\prime}$-aminated ketone derivative 2 (Fig. 1) as a main product, which was transformed to 2,5-di-1H-pyrazol-1-ylcyclopentanone 3 (Fig. 1) by further cyclization with 1,1,3,3-tetramethoxypropane. However, in reaction mixture we have found also two unexpected compounds 4 and 5 (Fig. 1). Formation of the compound $\mathbf{4}$ can be explained by the competitive intramolecular cyclization of $\mathbf{2}$ with the participation of ketone group. Appearance of compound $\mathbf{5}$, which structure was determined by $X$-ray analysis, is totally unexpected and unusual. It is assumed that such product results from the unusual intermediate formed via uncommon $\alpha, \alpha$-diamination, that hasn't been previously described, instead of usual $\alpha, \alpha^{\prime}$-diamination. The mechanism of formation of $\mathbf{5}$ is currently under investigation and will be discussed in a further paper.
Compound 5 was obtained by chromatographic separation of complex reaction mixture formed due to the catalyzed by $L$-proline $\alpha$-amination of cyclopentanone 1 (Fig. 1) with azadicarboxylates. Chromatographic separation was carried out using a combination of column with silica gel and PTLC. A gradient elution system was developed enabling the resolution of mixture of compounds 4 and 5 and pure product 2,5-di-( $1 H$-pyrazol-1-yl)cyclopentanone 3. Further PTLC of mixture of compounds 4 and 5 afforded to obtain both pure products as individual compounds.

In the title compound (Fig. 2), two essentially planar pyrazole rings (largest deviations from l.s. planes 0.002 (2) and $0.007(1) \AA$ ) form dihedral angle of $80.02(8)^{\circ}$. Five-membered cyclopentanone ring has envelope conformation with the C 3 atom as a flap (deviation from the plane $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 50.643(3) \AA$ ). All bond lengths are within expected ranges (Allen et al., 1987).

In the crystal, title molecules form centrosymmetric dimers by intermolecular H -bonds $\mathrm{O} 3-\mathrm{H} 3 \mathrm{a} \cdots \mathrm{N} 22 b^{\mathrm{i}}$ with parameters: $\mathrm{O} 3-\mathrm{H} 3 \mathrm{a}=0.90(3) \AA, \mathrm{H} 3 \mathrm{a} \cdots \mathrm{N} 22 b^{\mathrm{i}}=1.88(3) \AA, \mathrm{O} 3 \cdots \mathrm{~N} 22 b^{\mathrm{i}}=2.781(2) \AA$ and angle $\mathrm{O} 3-\mathrm{H} 3 \mathrm{a} \cdots \mathrm{N} 22 b^{\mathrm{i}}=$ 179 (2). Symmetry code: (i) $-x+2,-y,-z$.

## Experimental

Tetra-tert-butyl 1,1'-(2-oxocyclopentane-1,3-diyl)dihydrazine-1,2-dicarboxylate $\mathbf{2}$ was prepared by following procedure: a solution of di-tert-butyl $(E)$-diazene-1,2-dicarboxylate $(1 \mathrm{~g}, 4.3 \mathrm{mmol})$ and $L$-proline $(0.5 \mathrm{~g}, 0.43 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(43$ ml ) was cooled to 273 K and cyclopentanone ( $0.64 \mathrm{ml}, 6.5 \mathrm{mmol}$ ) was added dropwise. The reaction mixture was stirred at 273 K for 24 h , and allowed to warm slowly to room temperature. After 1 h , the mixture was concentrated and the crude residue was purified by column chromatography on silica gel (eluent - petroleum ether: ethyl acetate 5: 1) to afford
$1.92 \mathrm{~g}(61 \%$ yield $)$ of required product as a white foam. Spectrum ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 1.44(36 H, \mathrm{~s}, 4$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; 1.74-2.07 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; 2.13-2.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; 4.10$ and 4.42 (both $1 \mathrm{H}, 2$ br. s, CH ); 6.14 and 6.44 (both 1 H , 2 br. s, NH). Spectrum ${ }^{13} \mathrm{C}$ NMR, ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 28.0 ; 28.1 ; 40.2 ; 45.0 ; 54.6 ; 57.7 ; 58.2 ; 80.7 ; 81.6 ; 154.8 ; 155.3$; 205.1. MS (ESI), $m / z(\%): 545[M+H]^{+}(0.1), 450(5), 277(27), 157$ (100), 138 (14). MS (EI, 70 eV ), $m / z(\%): 276$ (46), 157 (47), 102 (45), 57 (100). Anal. Calculated for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{9}$ : C 55.13, H 8.14, N 10.29. Found: C 55.28, H 8.20, N 10.07.

General procedure for synthesis of $\mathbf{3}, \mathbf{4}$ and $\mathbf{5}$. The compound $2(0.76 \mathrm{~g}, 1.2 \mathrm{mmol})$ was dissolved in dioxane ( 5 ml ), and a saturated solution of HCl in dioxane ( $\sim 12 \%, 1.82 \mathrm{~g}$, 5 eq.) was added and stirred for 0.5 h . Than 1,1,3,3-tetramethoxypropane ( $0.59 \mathrm{~g}, 3.6 \mathrm{mmol}, 3 \mathrm{eq}$.) was added, and the reaction mixture was left at room temperature overnight. Further it was concentrated to dryness under reduced pressure, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and quenched with saturated $\mathrm{NaHCO}_{3}$. The aqueous layers were back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{ml})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel (eluent - petroleum ether: ethyl acetate $3: 1$ ) to afford $0.11 \mathrm{~g}(15 \%$ yield) of required 2,5-di-(pyrazol-1 $H$-yl)cyclopentanone 3 as a light yellow oil. Spectrum ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 2.22-2.32(2 H, \mathrm{~m}$, $\left.\mathrm{CH}_{2}\right)$; 2.34-2.45 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ); $5.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;$ 6.36-6.42 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ pyrazole); 7.65-7.73 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ pyrazole); 7.86-9.92 (2H, m, H-3 pyrazole). Spectrum ${ }^{13} \mathrm{C}$ NMR, ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 29.7(2 \mathrm{C}) ; 61.2(2 \mathrm{C}) ; 109.2 ; 125.6 ; 133.5$; 208.1. MS (ESI), $m / z(\%): 217[M+H]^{+}(1), 149$ (100). Anal. Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C} 61.10$; H 5.59 , N 25.91 . Found: C 59.98; H 5.47; N 25.82.

Further PTLC of mixture of compounds 4 and 5, using a 10:1 mixture of petroleum ether and methanole as eluent, gave both pure products as individual compounds with yelds $18 \%$ and $13 \%$, respectively.
The 6,7-dihydro-4H-cyclopenta[c]pyridazine-4-carbaldehyde 4: a colourless oil. Spectrum ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta: 2.65-2.70\left(2 H, \mathrm{~m}, \mathrm{CH}_{2}\right), 2.73-2.79\left(2 H, \mathrm{~m}, \mathrm{CH}_{2}\right), 6.38\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=1.8, J_{2}=2.5, \mathrm{H}-4\right), 7.67\left(1 \mathrm{H}, \mathrm{d}, J_{1}=1.5 \mathrm{H}-3\right), 7.87$ $\left(1 H, \mathrm{t}, J_{1}=3.1 \mathrm{H}-5\right), 8.54\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=0.36, J_{2}=J_{3}=2.56, \mathrm{CHO}\right)$. Spectrum ${ }^{13} \mathrm{C}$ NMR, $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 23.93$, $35.18,106.75,128.68,141.26,146.00,148.15,200.75$. HRMS (ESI, $4,5 \mathrm{mV}$ ). Calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}: 148.0631$, Found, $m / z: 148.0636[M+H]^{+}$.
The 3-hydroxy-2,2-di-(pyrazol-1 $H$-yl)cyclopentanone 5: light yellow solid. M.p. 385-386 K (decomp.). Spectrum ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 1.98-2.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.09-2.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.70$ and $2.65(0.60 \mathrm{H}$ and 0.40 H , both ddd, $\left.J_{1}=9.3, J_{2}=4.6, J_{3}=1 / 2, \mathrm{CH}_{2}\right), 2.89$ and $2.84\left(0.35 \mathrm{H}\right.$ and 0.65 H , both ddd, $\left.J_{1}=9.3, J_{2}=7.7, J_{3}=0.6, \mathrm{CH}_{2}\right), 4.88$ $(1 H$, br. s, OH$), 5.25(1 H, \mathrm{t}, J=4.6 \mathrm{CHOH}), 6.34-6.37\left(2 H, \mathrm{~m}, \mathrm{H}-4,4^{\prime}\right.$ pyrazole $), 7.49\left(1 H, \mathrm{dd}, J_{1}=2.6, J_{2}=0.6, \mathrm{H}-5\right.$ pyrazole), $7.58\left(1 H\right.$, dd, $J_{1}=1.8, J_{2}=1 / 2$, H-5' pyrazole), $7.62\left(1 H\right.$, dd, $J_{1}=1.8, J_{2}=1 / 2$, H-3 pyrazole), $7.67\left(1 H\right.$, dd, $J_{1}$ $=2.6, J_{2}=0.6, \mathrm{H}-3^{\prime}$ pyrazole $)$. Spectrum ${ }^{13} \mathrm{C}$ NMR, $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 24.96,34.11,76.03,94.68$, 107.07, 107.44, 128.44, 130.69, 140.18, 140.21, 203.57. MS (EI, 70 eV), $m / z$ (\%): 165 [ $\left.M^{+}-P y r\right]$ (62), 137 (22), 119 (72), 95 (100), 81 (22), 69 (18). Anal. Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C 56.89; H 5.21, N 24.12. Found: C 56.40; H 5.68; N 23.98.

The single crystals of title compound suitable for $X$-ray analysis were grown from methanol solution by slow evaporation at room temperature.

## Refinement

C-bound H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H} 0.93-0.98 \AA$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=$ $1.2(1.5) U_{\mathrm{eq}}(\mathrm{C})$. The O -bound H atom forming hydrogen bond was located from difference Fourier map and refined independently.

## Computing details

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).


## Figure 1

Synthetic path for title compound.


## Figure 2

The structure of the title molecule with the atom numbering scheme. Displacement ellipoids are drawn at the $30 \%$ probability level. H atoms are presented as small spheres of arbitrary radius.

## 3-Hydroxy-2,2-bis(1H-pyrazol-1-yl)cyclopentanone

## Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=232.25$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=11.4360$ (11) $\AA$
$b=9.5925(9) \AA$
$c=11.5968(11) \AA$
$\beta=117.25(2)^{\circ}$
$V=1131.0(3) \AA^{3}$
$Z=4$

## Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator non-profiled $\omega$ scans 2709 measured reflections 2458 independent reflections 1723 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.124$
$S=1.04$
2458 reflections
158 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

```
\(F(000)=488\)
\(D_{\mathrm{x}}=1.364 \mathrm{Mg} \mathrm{m}^{-3}\)
Melting point \(=385-386 \mathrm{~K}\)
\(\mathrm{Ag} K \alpha\) radiation, \(\lambda=0.56085 \AA\)
Cell parameters from 25 reflections
\(\theta=10.0-12.0^{\circ}\)
\(\mu=0.06 \mathrm{~mm}^{-1}\)
\(T=295 \mathrm{~K}\)
Prism, light yellow
\(0.20 \times 0.20 \times 0.20 \mathrm{~mm}\)
```

$R_{\text {int }}=0.026$
$\theta_{\text {max }}=21.0^{\circ}, \theta_{\text {min }}=1.6^{\circ}$
$h=-14 \rightarrow 12$
$k=0 \rightarrow 12$
$l=0 \rightarrow 14$

1 standard reflections every 60 min intensity decay: none

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0634 P)^{2}+0.119 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.18$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$

## Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $\mathrm{w} R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating $R$-factors (gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\mathrm{iso}} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| C1 | $0.8285(2)$ | $0.02907(18)$ | $0.22875(18)$ | $0.0442(5)$ |
| O1 | $0.74464(17)$ | $-0.04122(16)$ | $0.23414(15)$ | $0.0664(5)$ |
| C2 | $0.81692(16)$ | $0.09021(17)$ | $0.09920(15)$ | $0.0334(4)$ |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| C3 | $0.96176(17)$ | $0.10037(18)$ | $0.12975(15)$ | $0.0366(4)$ |
| H3 | 0.9944 | 0.0069 | 0.1259 | $0.044^{*}$ |
| O3 | $0.97820(14)$ | $0.18725(14)$ | $0.04063(13)$ | $0.0470(4)$ |
| H3a | $1.054(3)$ | $0.162(2)$ | $0.040(2)$ | $0.074(7)^{*}$ |
| C4 | $1.02716(19)$ | $0.1504(2)$ | $0.26969(17)$ | $0.0479(5)$ |
| H4a | 1.0111 | 0.2490 | 0.2748 | $0.058^{*}$ |
| H4b | 1.1213 | 0.1343 | 0.3099 | $0.058^{*}$ |
| C5 | $0.9623(2)$ | $0.0629(2)$ | $0.33416(17)$ | $0.0540(5)$ |
| H5a | 1.0122 | -0.0216 | 0.3706 | $0.065^{*}$ |
| H5b | 0.9563 | 0.1150 | 0.4029 | $0.065^{*}$ |
| N21a | $0.75682(14)$ | $0.22639(14)$ | $0.08142(13)$ | $0.0355(3)$ |
| N22a | $0.72893(16)$ | $0.27771(16)$ | $0.17473(15)$ | $0.0467(4)$ |
| C23a | $0.6800(2)$ | $0.4024(2)$ | $0.1306(2)$ | $0.0574(6)$ |
| H23a | 0.6514 | 0.4639 | 0.1744 | $0.069^{*}$ |
| C24a | $0.6759(2)$ | $0.4315(2)$ | $0.0121(2)$ | $0.0547(5)$ |
| H24a | 0.6452 | 0.5123 | -0.0369 | $0.066^{*}$ |
| C25a | $0.72630(18)$ | $0.31694(19)$ | $-0.01749(18)$ | $0.0442(4)$ |
| H25a | 0.7376 | 0.3034 | -0.0912 | $0.053^{*}$ |
| N21b | $0.73500(14)$ | $0.00404(14)$ | $-0.01115(13)$ | $0.0368(3)$ |
| N22b | $0.78713(15)$ | $-0.10826(15)$ | $-0.04212(15)$ | $0.0428(4)$ |
| C23b | $0.6833(2)$ | $-0.1781(2)$ | $-0.1270(2)$ | $0.0532(5)$ |
| H23b | 0.6885 | -0.2604 | -0.1668 | $0.064^{*}$ |
| C24b | $0.5666(2)$ | $-0.1145(2)$ | $-0.1493(2)$ | $0.0550(5)$ |
| H24b | 0.4817 | -0.1443 | -0.2044 | $0.066^{*}$ |
| C25b | $0.60277(18)$ | $0.0009(2)$ | $-0.07340(18)$ | $0.0481(5)$ |
| H25b | 0.5464 | 0.0660 | -0.0658 | $0.058^{*}$ |
|  |  |  |  |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C1 | $0.0694(12)$ | $0.0345(9)$ | $0.0456(10)$ | $0.0067(9)$ | $0.0409(10)$ | $0.0039(8)$ |
| O1 | $0.0940(12)$ | $0.0587(9)$ | $0.0741(10)$ | $-0.0051(8)$ | $0.0623(10)$ | $0.0126(8)$ |
| C2 | $0.0427(9)$ | $0.0331(8)$ | $0.0326(8)$ | $0.0013(7)$ | $0.0242(7)$ | $-0.0004(7)$ |
| C3 | $0.0436(9)$ | $0.0355(9)$ | $0.0368(9)$ | $0.0037(7)$ | $0.0238(8)$ | $0.0013(7)$ |
| O3 | $0.0464(7)$ | $0.0543(8)$ | $0.0542(8)$ | $0.0036(6)$ | $0.0350(7)$ | $0.0106(6)$ |
| C4 | $0.0529(12)$ | $0.0481(11)$ | $0.0393(10)$ | $0.0043(9)$ | $0.0180(9)$ | $-0.0022(8)$ |
| C5 | $0.0798(15)$ | $0.0514(12)$ | $0.0347(10)$ | $0.0157(11)$ | $0.0297(10)$ | $0.0068(9)$ |
| N21a | $0.0444(8)$ | $0.0353(8)$ | $0.0371(7)$ | $0.0049(6)$ | $0.0275(6)$ | $0.0014(6)$ |
| N22a | $0.0625(10)$ | $0.0443(9)$ | $0.0483(9)$ | $0.0085(7)$ | $0.0385(8)$ | $-0.0037(7)$ |
| C23a | $0.0696(14)$ | $0.0443(11)$ | $0.0681(14)$ | $0.0122(10)$ | $0.0400(12)$ | $-0.0082(10)$ |
| C24a | $0.0587(13)$ | $0.0420(11)$ | $0.0646(13)$ | $0.0100(9)$ | $0.0292(11)$ | $0.0103(10)$ |
| C25a | $0.0496(10)$ | $0.0450(10)$ | $0.0440(10)$ | $0.0053(8)$ | $0.0266(9)$ | $0.0084(8)$ |
| N21b | $0.0420(8)$ | $0.0385(8)$ | $0.0399(8)$ | $0.0002(6)$ | $0.0273(7)$ | $-0.0042(6)$ |
| N22b | $0.0503(9)$ | $0.0394(8)$ | $0.0510(9)$ | $0.0012(7)$ | $0.0338(8)$ | $-0.0067(7)$ |
| C23b | $0.0663(13)$ | $0.0465(11)$ | $0.0574(12)$ | $-0.0122(10)$ | $0.0373(11)$ | $-0.0137(9)$ |
| C24b | $0.0500(11)$ | $0.0651(13)$ | $0.0543(11)$ | $-0.0165(10)$ | $0.0279(10)$ | $-0.0114(10)$ |
| C25b | $0.0417(10)$ | $0.0581(12)$ | $0.0534(11)$ | $-0.0016(9)$ | $0.0293(9)$ | $-0.0052(10)$ |

Geometric parameters (A, ${ }^{\circ}$ )

| N21a-C25a | 1.351 (2) | C4- 55 | 1.523 (3) |
| :---: | :---: | :---: | :---: |
| N21a-N22a | 1.3531 (19) | C4-H4a | 0.9700 |
| N21a-C2 | 1.446 (2) | C4-H4b | 0.9700 |
| N22a-C23a | 1.321 (2) | C5-C1 | 1.493 (3) |
| C23a-C24a | 1.382 (3) | C5-H5a | 0.9700 |
| C23a-H23a | 0.9300 | C5-H5b | 0.9700 |
| C24a-C25a | 1.356 (3) | C1-O1 | 1.197 (2) |
| C24a-H24a | 0.9300 | N21b-C25b | 1.345 (2) |
| C25a-H25a | 0.9300 | N21b-N22b | 1.3568 (18) |
| C2-N21b | 1.449 (2) | N22b-C23b | 1.325 (2) |
| C2-C3 | 1.530 (2) | C23b-C24b | 1.380 (3) |
| C2-C1 | 1.561 (2) | C23b-H23b | 0.9300 |
| C3-O3 | 1.406 (2) | C24b-C25b | 1.356 (3) |
| C3-C4 | 1.521 (2) | C24b-H24b | 0.9300 |
| C3-H3 | 0.9800 | C25b-H25b | 0.9300 |
| O3-H3a | 0.90 (3) |  |  |
| C25a-N21a-N22a | 112.41 (14) | C3-C4-H4a | 111.0 |
| C25a-N21a-C2 | 128.53 (14) | C5-C4-H4a | 111.0 |
| N22a-N21a-C2 | 119.03 (13) | C3-C4-H4b | 111.0 |
| C23a-N22a-N21a | 103.46 (15) | C5-C4-H4b | 111.0 |
| N22a-C23a-C24a | 112.56 (17) | H4a-C4-H4b | 109.0 |
| N22a-C23a-H23a | 123.7 | C1-C5-C4 | 105.35 (14) |
| C24a-C23a-H23a | 123.7 | C1-C5-H5a | 110.7 |
| C25a-C24a-C23a | 105.26 (17) | C4-C5-H5a | 110.7 |
| C25a-C24a-H24a | 127.4 | C1-C5-H5b | 110.7 |
| C23a-C24a-H24a | 127.4 | C4-C5-H5b | 110.7 |
| N21a-C25a-C24a | 106.31 (16) | H5a-C5-H5b | 108.8 |
| N21a-C25a-H25a | 126.8 | $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 5$ | 128.69 (18) |
| C24a-C25a-H25a | 126.8 | $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | 123.02 (18) |
| N21a-C2-N21b | 108.45 (13) | C5-C1-C2 | 108.04 (15) |
| N21a-C2-C3 | 111.65 (13) | $\mathrm{C} 25 \mathrm{~b}-\mathrm{N} 21 \mathrm{~b}-\mathrm{N} 22 \mathrm{~b}$ | 111.25 (14) |
| N21b-C2-C3 | 115.74 (13) | $\mathrm{C} 25 \mathrm{~b}-\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 2$ | 126.87 (14) |
| N21a-C2-C1 | 107.57 (12) | $\mathrm{N} 22 \mathrm{~b}-\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 2$ | 120.12 (14) |
| N21b-C2-C1 | 111.79 (14) | $\mathrm{C} 23 \mathrm{~b}-\mathrm{N} 22 \mathrm{~b}-\mathrm{N} 21 \mathrm{~b}$ | 104.18 (15) |
| C3-C2-C1 | 101.26 (13) | N22b-C23b-C24b | 112.13 (18) |
| O3-C3-C4 | 115.56 (15) | N22b-C23b-H23b | 123.9 |
| O3-C3-C2 | 111.26 (14) | $\mathrm{C} 24 \mathrm{~b}-\mathrm{C} 23 \mathrm{~b}-\mathrm{H} 23 \mathrm{~b}$ | 123.9 |
| C4-C3-C2 | 102.63 (13) | C25b-C24b-C23b | 104.93 (18) |
| O3-C3-H3 | 109.0 | C25b-C24b-H24b | 127.5 |
| C4-C3-H3 | 109.0 | C23b-C24b-H24b | 127.5 |
| C2-C3-H3 | 109.0 | $\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 25 \mathrm{~b}-\mathrm{C} 24 \mathrm{~b}$ | 107.48 (17) |
| C3-O3-H3a | 107.6 (15) | N21b-C25b-H25b | 126.3 |
| C3-C4-C5 | 103.75 (15) | C24b-C25b-H25b | 126.3 |
| C25a-N21a-N22a-C23a | 0.1 (2) | C4-C5-C1-O1 | 177.50 (19) |
| $\mathrm{C} 2-\mathrm{N} 21 \mathrm{a}-\mathrm{N} 22 \mathrm{a}-\mathrm{C} 23 \mathrm{a}$ | 178.13 (16) | C4-C5-C1-C2 | 3.11 (19) |
| N21a-N22a-C23a-C24a | 0.1 (2) | N21a-C2-C1-O1 | 90.9 (2) |


| $\mathrm{N} 22 \mathrm{a}-\mathrm{C} 23 \mathrm{a}-\mathrm{C} 24 \mathrm{a}-\mathrm{C} 25 \mathrm{a}$ | $-0.3(3)$ |
| :--- | :--- |
| $\mathrm{N} 22 \mathrm{a}-\mathrm{N} 21 \mathrm{a}-\mathrm{C} 25 \mathrm{a}-\mathrm{C} 24 \mathrm{a}$ | $-0.3(2)$ |
| $\mathrm{C} 2-\mathrm{N} 21 \mathrm{a}-\mathrm{C} 25 \mathrm{a}-\mathrm{C} 24 \mathrm{a}$ | $-178.07(16)$ |
| $\mathrm{C} 23 \mathrm{a}-\mathrm{C} 24 \mathrm{a}-\mathrm{C} 25 \mathrm{a}-\mathrm{N} 21 \mathrm{a}$ | $0.4(2)$ |
| $\mathrm{C} 25 \mathrm{a}-\mathrm{N} 21 \mathrm{a}-\mathrm{C} 2-\mathrm{N} 21 \mathrm{~b}$ | $-58.2(2)$ |
| $\mathrm{N} 22 \mathrm{a}-\mathrm{N} 21 \mathrm{a}-\mathrm{C} 2-\mathrm{N} 21 \mathrm{~b}$ | $124.20(15)$ |
| $\mathrm{C} 25 \mathrm{a}-\mathrm{N} 21 \mathrm{a}-\mathrm{C} 2-\mathrm{C} 3$ | $70.5(2)$ |
| $\mathrm{N} 22 \mathrm{a}-\mathrm{N} 21 \mathrm{a}-\mathrm{C} 2-\mathrm{C} 3$ | $-107.11(16)$ |
| $\mathrm{C} 25 \mathrm{a}-\mathrm{N} 21 \mathrm{a}-\mathrm{C} 2-\mathrm{C} 1$ | $-179.25(17)$ |
| $\mathrm{N} 22 \mathrm{a}-\mathrm{N} 21 \mathrm{a}-\mathrm{C} 2-\mathrm{C} 1$ | $3.1(2)$ |
| $\mathrm{N} 21 \mathrm{a}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$ | $-49.79(17)$ |
| $\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$ | $74.91(18)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$ | $-164.01(13)$ |
| $\mathrm{N} 21 \mathrm{a}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $74.37(16)$ |
| $\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $-160.92(14)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $-39.84(16)$ |
| $\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $164.39(15)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $43.13(18)$ |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$ | $-28.36(19)$ |


| $\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$ | $-28.1(2)$ |
| :--- | :--- |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$ | $-151.91(18)$ |
| $\mathrm{N} 21 \mathrm{a}-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$ | $-94.37(16)$ |
| $\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$ | $146.68(15)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$ | $22.86(17)$ |
| $\mathrm{N} 21 \mathrm{a}-\mathrm{C} 2-\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 25 \mathrm{~b}$ | $-38.9(2)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 25 \mathrm{~b}$ | $-165.28(16)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 25 \mathrm{~b}$ | $79.5(2)$ |
| $\mathrm{N} 21 \mathrm{a}-\mathrm{C} 2-\mathrm{N} 21 \mathrm{~b}-\mathrm{N} 22 \mathrm{~b}$ | $157.55(13)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 21 \mathrm{~b}-\mathrm{N} 22 \mathrm{~b}$ | $31.2(2)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 21 \mathrm{~b}-\mathrm{N} 22 \mathrm{~b}$ | $-84.02(17)$ |
| $\mathrm{C} 25 \mathrm{~b}-\mathrm{N} 21 \mathrm{~b}-\mathrm{N} 22 \mathrm{~b}-\mathrm{C} 23 \mathrm{~b}$ | $1.36(19)$ |
| $\mathrm{C} 2-\mathrm{N} 21 \mathrm{~b}-\mathrm{N} 22 \mathrm{~b}-\mathrm{C} 23 \mathrm{~b}$ | $167.26(15)$ |
| $\mathrm{N} 21 \mathrm{~b}-\mathrm{N} 22 \mathrm{~b}-\mathrm{C} 23 \mathrm{~b}-\mathrm{C} 24 \mathrm{~b}$ | $-0.9(2)$ |
| $\mathrm{N} 22 \mathrm{~b}-\mathrm{C} 23 \mathrm{~b}-\mathrm{C} 24 \mathrm{~b}-\mathrm{C} 25 \mathrm{~b}$ | $0.2(2)$ |
| $\mathrm{N} 22 \mathrm{~b}-\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 25 \mathrm{~b}-\mathrm{C} 24 \mathrm{~b}$ | $-1.3(2)$ |
| $\mathrm{C} 2-\mathrm{N} 21 \mathrm{~b}-\mathrm{C} 25 \mathrm{~b}-\mathrm{C} 24 \mathrm{~b}$ | $-166.00(16)$ |
| $\mathrm{C} 23 \mathrm{~b}-\mathrm{C} 24 \mathrm{~b}-\mathrm{C} 25 \mathrm{~b}-\mathrm{N} 21 \mathrm{~b}$ | $0.6(2)$ |
|  |  |

Hydrogen-bond geometry $\left({ }^{A},{ }^{\circ}\right)$

| $D — \mathrm{H} \cdots A$ | $D — \mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 3 — \mathrm{H} 3 a \cdots \mathrm{~N} 22 b^{\mathrm{i}}$ | $0.90(3)$ | $1.88(3)$ | $2.781(2)$ | $179(2)$ |

Symmetry code: (i) $-x+2,-y,-z$.

